Soils and Marsh Creek Evolution at a Marsh Augmentation Project in Seal Beach CA

Richard F. Ambrose University of California, Los Angeles

The threat of sea level rise

- Responses of salt marshes to sea level rise
 - Transgression
 - Changes in marsh plain elevation
 - Marsh plain elevation (Elevation capital)
 - Plant productivity
 - Sediment availability
- Many (but not all) California salt marshes will be able to keep pace with sea level rise until 2030 or 2050, but not after that

Management options

- Facilitate transgression
- Improve salt marsh resilience
 - Protect natural sediment supply
 - Remove other stressors
 - Add sediment to marsh plain:
 Thin Layer Placement

Seal Beach National Wildlife Refuge

A preview of future higher sea levels

- Subsidence from groundwater and oil extraction and removal of natural sediment source
 - Relative sea level rise 3x
 higher than other marshes
 - 29 cm subsidence since 1960's
- The low elevations of the Refuge has resulted in stunted *Spartina foliosa*, providing little habitat for the endangered Light-footed Ridgway's Rail

Beneficial Use of Dredge Material at Seal Beach to Raise the Marsh Plain Elevation

Goal: Apply 25 cm of clean sediment of appropriate grain size over 3.4 ha (8.5 acres).

After 2 years, thickness of at least 7.5 cm.

Sediment addition: January to April 2016

Pre- and post-augmentation monitoring

- Sediments
 - Suspended sediment (turbidity) in channels
 - Precise elevations (with RTK GPS)
 - Subsidence/uplift with Surface Elevation Tables
 - Accretion/erosion with feldspar markers
 - Compaction (feldspar markers and sediment stakes)
- Tidal creek morphology
- Biological community
 - Vegetation
 - Benthic invertebrates
 - Eelgrass productivity
 - Bird counts (general and Light-footed Ridgway's Rail)
- Carbon sequestration
 - Coring
 - Greenhouse gas (methane and nitrous oxide) flux

Project sites

- Sediment
 Augmentation Site
- Control Site

Salt Marsh Sediment Augmentation Project - April 2016

Monitoring questions

- How does the depth of the added sediment change over time?
- How do sediment characteristics (grain size, bulk density, organic content) change over time?
- Do tidal creeks re-establish themselves after sediment addition?

How does the depth of added sediment change over time?

Feldspar plots

- Feldspar plots established in augmentation and control sites
 - Stratified random design
 - Three strata: Spartina, Batis and Pond
 - 24 in augmentation site, 16 in control site
 - Cores taken to measure depth to marker horizon
- Pre-augmentation plots established in October 2015
- Post-augmentation plots established in May 2016

Sediment Stake Map: Augmentation Site

Low spot

High spot

Target depth

Low spot

Target depth

High spot

Low spot

High spot

Target depth

Low spot

Target depth

High spot

Low spot

High spot

Target depth

How do sediment characteristics (grain size, bulk density, organic content) change over time?

Months After Augmentation

Do tidal creeks re-establish themselves after sediment addition?

Tidal creek cross sections

Augmentation site

Sediment control structures

- Hay bales and sand bags placed a tidal creek mouths to minimize sediment leaving site
 - Remained in place after sediment addition
 - Appear to have inhibited tidal creek formation
- Control structures are being removed in phases to evaluate effect on tidal creek formation

Tidal creek profiles 6 months after control structure removal

"Aerial" surveys of tidal creek formation

Orthomosaic and Digital Surface Model

Conclusions

- Sediment depth did not change as much as expected during first year
 - Some areas actually increased in depth after sediment addition
- Little change in sediment characteristics
- Tidal creeks not re-establishing themselves (yet)
 - Sediment control structures may have reduced tidal flow, inhibiting creek formation, but even after removal there has been little development of tidal creeks

Added sediment was sandier than expected

Acknowledgments

- Students: Jennifer Aleman-Zometa, Yareli Sanchez, Jennifer Taylor, Amanda Wagner, Nickie Cammisa
- Team members: Karen Thorne, Christine Whitcraft, Glen MacDonald, Jason Keller; Kirk Gilligan, Rick Nye, Vicki Touchstone, Evyan Sloane, and Mayda Winter
- Project managed by US Fish and Wildlife Service
- Main funding from California Coastal Conservancy, US Fish and Wildlife Service, and California Dept. of Fish and Wildlife. Many collaborating agencies!

